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Modern Solar Navigation Techniques 

Alberto Bodas Gallego

Introduction

Navigation is defined as “the science of 
getting ships, aircraft or spacecraft from 
place to place.” It is especially concerned 
with determining the position and course 
of a vessel, to safely plan, track and 
control the craft’s journey.
Navigating by sea has always been 
especially complicated, due to the 
absence of distinctive landmarks to 
guide your course. Once sailors began 
undertaking longer journeys, losing 
sight of land, they required a system of 
navigation that would be viable in open 
sea. The solution was to measure the 
position of celestial bodies to determine 
the observer’s location using appropriate 
mathematical tools.[4]

Using the sun and stars for this purpose is 
an elegant and ingenious solution, and 
understanding the motion of celestial 

bodies has been the driving force in 
physical development through some of the 
most significant scientific expansions in 
history. Furthermore, celestial navigation 
constitutes important knowledge on a 
light vessel, as it is always reliable in case 
of electronic equipment failure.
Hence, this essay will explore some 
mathematical methods used to navigate 
the globe using the sun and develop 
some alternative solar methods which can 
be used for navigation.

Navigation

Some modelling assumptions are made in 
this essay which must be explained. These 
are grouped according to their effect.
This paper assumes that the earth is 
a perfect sphere (as opposed to an 
ellipsoid [10]), and that the earth is 
stationary during a day (as opposed 
to rotating 0.985° around the sun). 

Navigation by sea has proven difficult due to the absence of distinct markers for 
guidance.  One solution for longer journeys was to track the position of celestial 

bodies as a navigational method, which has become more reliable as mathematical 
models improved over time. This essay aims to explore the mathematical methods 

behind modern solar navigation techniques and illustrate how these models are highly 
useful to describe and predict real-life scenarios.
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Both these effects are negligible [10]. 
Furthermore, Polar Precession, which is 
the rotation of the Rotational Axis about 
the Orbital Axis once every 2,600 years 
[9], is ignored as it has negligible effects 
during our lifetimes.

Finally, this paper assumes the light rays 
incident on the earth from the sun are 
parallel. The average distance from the 
earth to the sun, defined as one AU, is 
150,000,000km. In comparison, the 
radius of the earth is only 6,371km on 
average [1]. This is a ratio of
1: 23 544, which means the radius of 
the earth can be ignored, justifying this 
assumption.

More significant assumptions include 
ignoring the earth’s ellipsoidal orbit, 
which noticeably affects the angular 
speed of the earth around the sun, and 
therefore declination calculations, at some 
times of the year (see [8]). Atmospheric 
refraction (the bending of light
as it enters the atmosphere) is also 
ignored. Refraction causes an average 
of 1.2° per day of additional sunlight 
[1] (which is roughly equivalent to a 
few additional minutes), with variable 
effect. Finally, magnetic north is assumed 

to lie exactly above the north pole, 
which is not necessarily the case [2]. 
This effect, called Magnetic Deviation, is 
location-dependent and there exist local 
corrections, but it is ignored in this essay.

Terminology

Spherical Geometry

A Great Circle is the circle drawn on 
the surface of a sphere by a plane 
intersecting that sphere, which passes 
through the sphere’s centre, such as the 
equator.

A Segment is the shortest line connecting 
two points on a sphere’s surface, which 
is always a finite section of a great circle. 
Any two points on a sphere can be 
connected by exactly one great circle 
segment unless they are antipodes.
As all spheres are similar, segment lengths 
are simplified to the angles subtending
them from the sphere’s centre. Angular 
lengths are used for all spherical 
trigonometry formulae and can be 

Figure One (Left): Great Circle (and segment) 
through A and B. Figure Two (Right): Spherical 
Triangle drawn by segments a, b and c.

Figure Three: Small circle of centre A, passing 
through B.
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Latitude, λ: The angle measuring the 
North-South displacement of a given 
point, defining the Equator as λ= 0°. 
North is defined as the positive direction 
and South as the negative direction. 
Therefore, latitude oscillates from -90° 
to +90° at the poles. The small circles 
normal to the Rotational Axis (NS) which 
mark different latitudes on a map
are called Parallels.

Longitude, φ : The angle measuring the 
East-West displacement of a given point,
using the Prime Meridian (passing 
through Greenwich, England) as λ= 0° . 
West of the Prime Meridian is defined as 
negative and East of the Prime Meridian 
as positive. Therefore, Longitude ranges 
from -180° to +180°. (Note that -180° 
and +180° longitude are equivalent, 
both marking points on the 180° 
meridian.) The semicircles running from 

converted to real lengths using the radius 
of the sphere in question.

A Spherical Triangle is a triangle drawn 
on the surface of a sphere by three 
intersecting segments. The lengths of 
its sides and the angles between them 
can be resolved using spherical rules 
analogous to the planar sine and cosine 
rules.

A Small Circle is the circle drawn on 
the surface of a sphere by a plane 
intersecting the sphere without passing 
through the centre.
All parallels (except the Equator) are 
small circles, with the Rotational Axis 
passing through their centres.
An Antipode is the diametrical opposite 
of a given point on a sphere, which is a 
pair of points through which a straight line 
can be passed through which also goes 
through the origin.

Navigation

Any location on a sphere’s surface, in 
this case the Earth, can be described by 
two angles, measured from the sphere’s 
centre, O, perpendicular to each other. 
These angles are analogous to the x and 
y coordinates on a Cartesian plane.

On Fig.4, the position of vessel V is 
defined by angle λ, called latitude, and 
angle, φ called longitude. 

Figure Four : Small circle of centre A, passing 
through B.
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above this plane is visible to an observer 
at V, and any point below it is not.

Celestial Sphere: an imaginary sphere 
with used to map the position of celestial 
bodies. Two systems of coordinates exist:
Equatorial coordinates: earthly 
coordinates (latitude and longitude) are 
projected onto the celestial sphere, and 
the centre of the Celestial Sphere is O, the 
centre of the Earth. [14] 

Horizontal coordinates: coordinates 
relative to the observer’s horizon plane 
are used, with the observer in the centre 
of the sphere. [7]

Azimuth,    :Measures the horizontal 
angular displacement of a body from the 
observer’s north bearing.
Altitude, e: Measures the vertical angular 
displacement of a body.

Zenith: The point on the celestial sphere at 
90° Altitude.

Figure Five : Altitude and Azimuth

the North to South poles, which mark 
different longitudes on a map, are called 
Meridians.

Note that whereas the Equator is a 
natural choice for 0° λ due to Earth’s 
rotation, the choice of the Prime 
Meridian for 0° λ is completely arbitrary. 

This paper adopts mathematical 
convention, where positive and negative 
signs are used to differentiate north from 
south and east from west (opposed to 
the use of letters N, E, S and W (33°N, 
32°W) seen in ocean charts), and 
decimals are used when being
accurate to more than one degree, 
opposed to minutes and seconds. 

Note also that the symbols for latitude 
and longitude are switched around in 
charts [11]. To convert between decimals 
and seconds and minutes, use the 
definitions

(chosen so there are 60 minutes in a 
degree and 60 seconds in a minute.) A 
nautical mile is defined as the distance on 
the earth’s surface in a nautical minute, so 
1NM=1.852km. [17]

Horizon Plane, h: A plane tangential to 
the sphere’s surface at point V. As light 
travels in straight lines, any celestial body 



- 33 -

Note that (based on the Celestial Parallel 
Assumption) it is assumed V and O are 
on the same point, to allow the two 
coordinate systems to be compared.

Calculating Longitude using Time

Whereas finding latitude through the 
altitude of stars or the sun was widely 
used since ancient times, calculating 
longitude accurately was not possible 
until the chronometer was invented. [4]
The earth completes one full rotation 
around its axis in 23 hours and 56 
minutes, such that it has the same 
orientation relative to the rest of the 
universe. This is called a Sidereal day, 
used when dealing with stellar motion. 
[19] 
However, as the earth is rotating around 
the sun, it takes another 4 minutes for the 
sun to reach the same meridian it started 
the day at, compensating for the 0.985° 
travelled around the sun in this time. 
Accounting for both these effects, it takes 
24 hours for the earth to rotate 360° 
around the sun in what is known as a 
Solar day, used when dealing
with solar motion. [19] 

The Meridians every 15° mark different 
time zones. This simple calculation also 
means that if the solar time of a reference 
point (GMT, Greenwich Mean Time, is 
used) is known through an accurate

Figure Seven : World Meridians

Figure Eight : Axial Tilt, the Daylight Plane and 
the Declination

chronometer, and Local Solar Time (LST) 
at the observer’s longitude is calculated, 
the difference in time can be converted to 
degrees, obtaining a result for longitude.

LST was typically measured at Solar 
Noon, because when 

by convention, making it the most 
convenient time for measurement. 
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which is also the latitude over which the 
sun reaches local Zenith at midday.
NS can be thought of as rotating around 
the Orbital Axis, completing 1 revolution 
a year. This means that the distance from 
the rotational axis at N to the daylight 
plane can be described as: 

Where l=the distance from N to the 
Daylight Plane, R=the distance from N 
to the Orbital Axis and ω= the angle 
of displacement of the earth around 
the sun, measured from the last spring 
equinox The spring equinox used for 
measurements in this paper took place 
on the 21/03/2019 [20]. 

Planet Earth : Great Circle marked by the Daylight 
Plane

Calculating Solar Declination (ϴ)

Being able to calculate Solar Declination 
is vital knowledge for all modern location 
calculations. Declination depends on 
Axial Tilt and the position of the Daylight 
Plane.
Axial Tilt: The angle between the 
Equatorial Plane and the Orbital Plane. 
(Also the angle between the Rotational 
Axis (NS) and the Orbital Axis)

Equatorial Plane: The plane projected 
from λ=0°.

Orbital Plane: The plane the Earth orbits 
the Sun through.

As the earth orbits, the North and South 
poles’ orientation remains fixed with 
respect to the rest of the universe but 
rotates with respect to the sun. Whether 
the North or South Pole is facing the sun 
is responsible for Earth’s seasons. [13] 

The Daylight Plane is the plane normal to 
the line     , which joins O, the centre of 
the earth and     , the centre of the sun. It 
divides the earth into two hemispheres, 
one which is facing the sun and has 
daylight, and one facing away from the 
sun, which has night-time. This plane 
is independent of the earth’s rotation, 
meaning that whilst points on earth rotate 
at 15°/h around NS,      O and the 
Daylight Plane remain fixed relative to the sun. 
Solar Declination (ϴ) is the angle 
between NS and the Daylight Plane, 
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The spring equinox was a natural choice 
for ω=0, because at that date, NS is 
aligned with the Daylight Plane, meaning 
ϴ=0 when ω=0. 

It should be noted that these constructions 
show ϴ ranges between −23. 4° and 
23. 4°. ω can be converted to days by 
introducing the conversion factor 

Where Ω= days since the last spring 
equinox. 

Calculating Latitude using Solar 
Height at Noon

One of the most widespread methods of 
calculating latitude is measuring the sun’s 
altitude at solar noon, when the sun is 
aligned with the observer’s meridian
and the centre of the earth [6]. The sun 
reaches its maximum altitude for the 
observer at this time.     V and     O are 
assumed to be parallel. 

However, for a λ in the Southern 
Hemisphere, λ ≠ a + ϴ. Instead: 

This ambiguity limits this method, as 
the observer may not know which 
Hemisphere they are in. Measuring the 
elevation of the sun, instead of from 
the closest azimuth, only from α=180° 
(South), can resolve this issue: 

Figure Ten : Constructions for calculating ϴ
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Figure Eleven : A cross section of the Earth at Solar Noon 

This variation of the formula can be used 
from any latitude without ambiguity. 

Calculating Latitude through the 
Daylight Angle

With modern knowledge about the solar 
system, navigators can find their location 
in more innovative ways. One such way is 
through measuring the Daylight Angle.

The two intersections between parallel λV 
and the daylight plane mark the points of 
sunrise and sunset for V, which could be 
any point on this latitude. This means that 
angle Ψ is the angle of rotation around 
NS for which observers at λV are in the 
dark, and its pair, Ψ, is the angle for 
which observers have daylight: 

These angles are dependent on ϴ and 
λ, with effects that can be qualitatively 
summarised. When ϴ is large, the 
difference between Ψ and    increases, 
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and when λ is large, the difference 
between Ψ and    increases. When either 
λ or ϴ (or both) tend to zero, Ψ and   
both tend to 180°. (Hence, points on the 
Equator have exactly 180° (12 hours) of 
sunlight every day of the year.) 
These observations explain some 
properties of the earth.
When ϴ=0°, every latitude has exactly 
180° (12 hours) of sunlight, which 
happens two days a year, on the
Equinoxes. There are also two solstices 
every year, one being the longest and the 

other the shortest day of the year. They 
occur when ϴ is largest (ϴ=±23.4°). As 
can be appreciated from Fig.12, there are 
very large positive and negative latitudes 
where the Daylight Plane does not
intersect parallel λ. Points with latitude 
greater than these would have no sunrise 
or sunset, therefore having 360° of full 
daylight or night-time for at least a day 
a year. The Polar Circles, which can be 
found at 66°33’47.8” N and
66°33’47.8” S [12], are the closest 
parallels to the equator where this occurs.

Figure Twelve : The Daylight Angle
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Using these constructions, an expression 
for    can be constructed from these two 
angles. Firstly, lengths A, B and C are 
defined to construct triangles involving ϴ 
and λ. 

Which can be rewritten as:

(Recall A=the distance from O to the 
intersection of the rotational axis with λ)

Similarly, B can be simplified to 

(B=the radius of the small circle defined 
by the parallel at latitude λ) 

(C=the bisector of angle   , which joins 
the intersection between NS and λ with 
the intersection between the Orbital Axis 
and λ)

From the right-angled triangle formed with 
B, C and Ψ/2, we can conclude that: 

Substituting for our lengths and 
simplifying, we get 

We can rearrange for λ, to obtain 

As Ψ = 360° −   , we can substitute for   
to obtain the daytime equivalent

 Rearranging for Ψ
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Figure Thirteen : The Yearly Angle against the Daylight Angle. λ=39° 

Figure Fourteen : The Yearly Angle against the Daylight Angle. λ=70° 
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As can be observed in Fig.14, when λ 
is above the Polar Circles, there is no 
sunrise or sunset at certain values for ω, 
so the graph becomes undefined near the 
solstices. Opposed to Fig.13, as in
Fig.14 λ is negative, the Daylight Angle 
shrinks during the first quarter of the year.

For Fig.15, the lowest latitudes to obey the 
formula for λ=360°should be equal to the 
latitudes of the Polar Circles. Our

equation for λ predicts a polar circle 
latitude of ±66.6 to three significant 
figures, and the published latitudes are 
±66°33’47.8”= ±66.563°, so we can 
conclude the formula makes an accurate 
prediction.

To try out equation (4c) first-hand, the 
following measurements were taken and 
checked against their corresponding GPS 
coordinates: 

Figure Fifteen : The Yearly Angle against the Daylight Angle. λ=39° 
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Within its limitations due to assumptions 
made, such as constant orbital speed 
and refraction, and inaccuracies in 
measurements due to visibility, equation 
(4c) uses trigonometry to model the 
relationship between the angle of 
sunlight, the date and the observer’s 
latitude to a good degree of accuracy, 
erring by -3.6° (2%).

Calculating Latitude Through the 
Sunrise or Sunset Bearing

Whilst the Daylight angle method for 
finding latitude works, it presents several 
limitations which reduce its usefulness 
whilst navigating. Firstly, it would take a 
time period averaging 12 hours to obtain 
the two measurements required to find 
your latitude, and until then any course 
chosen risks travelling in an erroneous 
direction. Furthermore, to avoid needing 
any corrections, the observer would have 
to remain in the same location throughout 
the measurement, which is unpractical for 
a travelling vessel, and at sea almost
impossible to achieve due to drift, waves, 
and currents.

Therefore, a different approach was 
explored building on the Daylight 
Angle, which uses the bearing of sunrise 
or sunset to find latitude. As these 
measurements are instantaneous, it 
eliminates the difficulties presented by the 
Daylight Angle formula.

Firstly, compass bearings must be 
translated onto a spherical perspective. 
The North-South needle on a compass is 

tangential to the longitude meridian the 
observer is on, and the East-West needle 
is tangential to the observer’s parallel. 
However, to exploit spherical geometry 
later on, we shall use the bearing of the 
East-West needle to determine another 
great circle normal to the longitude great 
circle, as shown in Fig.16. 

For any point V on a sphere, and a body 
located in its celestial hemisphere, there is 
a straight line which connects the celestial 
body to point V. When this celestial body 
is directly on V’s horizon (at 0° altitude), 
this line is tangential to point V’s position 
on a sphere. As solar rays are assumed to 
be parallel, this occurs when angle
VO     =90°. 

As can be seen from Fig.18, V     (which is 
tangential to V) is oriented, from
V’s perspective, on the same bearing as 
the great circle segment which connects V 
to M, the point over which the Sun is 90° 
overhead. This allows us to think about the 
position of the Sun in terms of M, allowing 
us to introduce concepts from Spherical 
Trigonometry to find V’s latitude.

Figure Sixteen : Real vs. compass East and West
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midday point is on the same meridian as 
M. NS passes through N, so we can
further conclude that: 

Moreover, as the Daylight Plane (which 
V lies on) is normal to     O (which M lies 
on) we can conclude that: 

We can define a segment VM, which 
connects V to M. Another segment VN 
connects V (the observer at sunrise) to N. 
(When V is at sunset, 360-NVM gives 
the bearing of M, and therefore the sun). 
Furthermore, M can be connected to the 
North Pole using another segment of a
great circle, NM. This gives us a spherical 
triangle, and angle NVM can be found 
from the existing information. 

As can be seen from fig.18: 

From the Daylight angle formula, we 
know Ψ= the angle of daylight received 
by a point on λV. Therefore, the point on 
λV which is at midday when V is at sunrise 
is (Ψ/2)° away from V. As it is midday for 
a whole meridian at any given time, λ’s 

Figure Seventeen : Tangent to V translated into a great circle segment.

Figure Eighteen : Spherical Triangle NVM
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Solving for NVM

First, we rearrange the cosine rule and substitute in the values for MN, VN, and VM 
quoted above

Proof

We apply the spherical cosine rule: cos(c) = cos(a) * cos(b)+ sin(a) * sin (b) * cos (C) [21] 
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Rearranging for λ: 

If we substitute the sunset bearing (360°-NVM) for NVM, the expression simplifies to 
obtain the same formula:

Equation (5c), however, has an important 
limitation. As can be observed in Fig.19 
and Fig.20, for points on two latitudes 
of equal magnitude, but opposite sign 
(±λ) the sun will rise and set on the same 

bearing (as cos(λ) = cos(−λ).) Therefore, 
this method will limit λ to two locations: 
one in the Southern Hemisphere and 
another in the Northern Hemisphere.
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Measuring the sun’s azimuth some time 
after sunrise or some time before sunset 
can help rule out one of the possible 
latitudes. If the sun travels north (sunrise) 
or comes from north (sunset), then λ<ϴ. 

Conversely, if the sun travels south 
(sunrise) or comes from south (sunset), 
then λ>ϴ. Finally, if λ=ϴ, the sun will 
travel towards the observer’s zenith 
(straight up).

However, this solution does not apply 
when λ has lesser magnitude than 
ϴ, because when this is the case, the 
possible latitudes will either both be 
above ϴ (when ϴ <0) or both be 
below ϴ (when ϴ <0). Expressed 
mathematically, when |λ| < |ϴ|, ±λ > 
−ϴ or ±λ < +ϴ. 

In these cases, additional observations of 
the sun’s bearing do not rule out one of 
the possible latitudes.

However, the Hemisphere navigators are 

in is usually well known to them, unless 
they are navigating close to the equator. 
In these cases, confirmation through the 
Solar Noon formula would be required 
to eliminate one of the possible latitudes, 
limiting the use of this
formula. 

First-hand calculations:

 Understanding the observer’s perspective 
of sunrise and sunset allows two 
additional individual measurements to be 
used to find λ.

The results imply equation (5c) is more 
accurate than (4c), erring by -3.2° 
(1.8%). It is speculated this is because 
atmospheric refraction may have had less 
impact on bearing measurements. 

However, this method requires 
corroboration through additional 
measurements under specific 
circumstances, limiting its use when 
navigating close to the equator. 

Figure Sixteen : Real vs. compass East and West
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Repeating this process for sunset gives :

Calculating Longitude using Sunrise and Sunset Observations

The times of sunrise and sunset can be used to calculate longitude too, through some 
manipulation of the formulae for latitude explored above. As 12.0= Solar Noon, it 
follows that:

Introducing these into the equation φ = 15 * (GMT − LST) gives: 

Values for NVM can be used to find λ through the Sunrise/Sunset formula, and this can 
be used in turn to find Ψ through the Daylight Angle formula. Substituting λ=
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These two formulae allow us to calculate longitude using NVM measurements at 
sunrise and sunset, along with the time in GMT.

 These methods allow us to calculate longitude at three different times in a day, instead 
of just one, with an error of +1.4% for the worst measurement using (5). However, in 
absolute terms (+4.9°) this is a more significant error than those obtained for latitude. 

Conclusion

Over the years, mathematical models 
for the solar system have become 
increasingly accurate, allowing for 
different ways to calculate an observer’s 
location. This paper has explored three 
different methods of calculating latitude, 
using solar height at noon, hours of
daylight and the bearing of sunrise 
and sunset. Furthermore, it has applied 
these formulas to expand the number 
of moments an observer can determine 
their longitude at, to include sunrise and 
sunset besides solar noon. These methods 
allow navigators to find their location 
with minimum equipment (requiring only 
a compass, sextant, and chronometer set 
at GMT). 

The errors presented for measured values 
are small enough as to be useful in an 

emergency, despite not being accurate 
enough for regular journeys. 

Another important limitation is that 
sunrise and sunset measurements present 
ambiguity near the equator, but this 
can be resolved using other methods to 
corroborate the coordinates obtained.

A possible area for further investigation 
could be correcting the formulae to 
account for atmospheric refraction 
and the earth’s varying orbital speed, 
reducing measurement errors. Moreover, 
the relationship between the Azimuth and 
Altitude of the sun (which relies on
the Daylight Angle and the Sunrise and 
Sunset bearings) could be investigated, 
yielding a formula that would allow 
an observer to determine latitude and 
longitude at any time of day, with any 
solar position. 
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This model would also correct the Equator 
ambiguities without relying on multiple 
measurements. Lastly, other areas of 
navigation, such as stellar triangulation, 
and the mathematics of courses and 
headings on a moving vessel and their 
conversions to a two-dimensional map, 
could also be explored. These topics have 
many applications in other areas, such 
as maximising natural light in homes and 

maximising yield in solar farms.
Overall, the methods explored illustrate 
how mathematical models are highly 
useful to describe and predict real-life 
scenarios. Methods
such as these have been a part of human 
development, travel and exploration 
throughout the years, and their usefulness 
in different situations ensures their 
continued use and study in the future.
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